

Mark Scheme (Results)

October 2021

Pearson Edexcel International A Level In Further Pure Mathematics F1 (WFM01) Paper 01

Question Number	Scheme		Notes	Marks
1(a)	$\mathbf{A}^{-1} = \frac{1}{3 \times -2 - a \times -2} \begin{pmatrix} -2 & -a \\ 2 & 3 \end{pmatrix}$	slips in t	the method for the inverse. Allow the determinant and at most one the adjoint matrix.	M1
	$=\frac{1}{2a-6}\begin{pmatrix} -2 & -a\\ 2 & 3 \end{pmatrix}$	Correct	inverse	A1
				(2)
(b)	$\mathbf{A} + \mathbf{A}^{-1} = \mathbf{I} \Rightarrow \begin{pmatrix} 3 & a \\ -2 & -2 \end{pmatrix} + \frac{1}{2a - 6} \begin{pmatrix} -2 & -a \\ 2 & 3 \end{pmatrix} =$	(* -)	processed correctly and no equation implies an incorrect	M1
	$3 + \frac{2}{6 - 2a} = 1, a + \frac{a}{6 - 2a} = 0, -2 + \frac{2}{2a - 2a}$ Uses one of the elements to set up a sufficient Allow a sign slip in the $6 - 2a$ but	itable equa	ation and solves for a .	dM1
	$a = \frac{7}{2}$ oe	Correct	value and no others	A1
				(3)
				Total 5

Question Number	Scheme		Notes	Marks
2(a)	$f(x) = 7\sqrt{x} - \frac{1}{2}x^3 - \frac{5}{3x} \qquad x > 0$			
	f(2.8) = 0.1420022 f(2.9) = -0.8486421		Attempts both f(2.8) and f(2.9) with at least one correct to 1 s.f.	M1
	Sign change (positive, negative) and $f(x)$ therefore (a root) α is between $x = 2.8$		Both f(2.8) = awrt 0.1 (or truncated) and f(2.9) = awrt -0.8 (or truncated), sign change, continuous and minimal conclusion.	A1
<i>a</i> .				(2
(b)(i)	$f'(x) = \frac{7}{2}x^{-\frac{1}{2}} - \frac{3}{2}x^2 + \frac{5}{3x^2}$		$x^n \to x^{n-1}$ at least once	M1
	$\frac{1}{2}$ 2 2 $3x^2$		Correct derivative	A1
(b)(ii)	$x_1 = 2.8 - \frac{f(2.8)}{f'(2.8)} = 2.8 - \frac{0.14200}{-9.455}$)2276 7649	Correct application of Newton-Raphson. If no substitution/values see accept a correct statement followed by a value for the attempt.	M1
	= 2.815		cao following a correct derivative.	A1
(a)	2.0 2.6)		(4
(c)	$\frac{2.9 - \alpha}{0.8486421875} = \frac{\alpha - 2.8}{0.14200222}$	762	Any correct or implied linear interpolation statement.	B1
	$\alpha = \frac{2.8 \times 0.8486421875}{0.8486421875}$ Rearranges an equation suitable form (e.g. a give			M1
	= 2.814		cao	A1
Alt (c)	$\frac{x}{0.1420022762} = \frac{0.1}{0.1420022762+0}$.8486421875	Any correct or implied linear interpolation statement for <i>x</i> distance.	B1
	0.4×0.1420022762		M1	
	$\alpha = 2.8 + x = 2.8 + \frac{0.4 \times 0.1420022762}{0.8486421875 + 0.1420022762} =$ Rearranges and adds 2.8 to give $\alpha =$			
	= 2.814	100 2.0 to give W	cao	A1
				(3
				Total 9

Question Number	Scheme	Notes	Marks	
3	$2x^2 - 5x$			
(a)	$\alpha + \beta = \frac{5}{2}, \alpha\beta = \frac{7}{2}$	$=\frac{5}{2}, \alpha\beta = \frac{7}{2}$ Both		
<i>a</i> > <i>a</i>			(1)	
(b)(i)	$\alpha^2 + \beta^2 = \left(\alpha + \beta\right)^2 - 2\alpha\beta$	Attempts to use a correct identity	M1	
	$= \left(\frac{5}{2}\right)^2 - 2\left(\frac{7}{2}\right) = -\frac{3}{4}$	cso – must have scored the B1	A1	
(ii)	$\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta)$	Attempts to use a correct identity	M1	
	$= \left(\frac{5}{2}\right)^3 - 3\left(\frac{7}{2}\right)\left(\frac{5}{2}\right) = -\frac{85}{8}$	cso – must have scored the B1	A1	
			(4)	
(c)	$= \frac{\alpha^2 + \beta^2 + \alpha + \beta}{\alpha^2 \beta^2 + \alpha^3 + \beta^3 + \alpha \beta}$ Attempts sum – substitutes their into a con	$\frac{\alpha}{\alpha} = \frac{\alpha^2 + \beta + \beta^2 + \alpha}{(\alpha^2 + \beta)(\beta^2 + \alpha)}$ $\frac{\beta}{\beta} = \frac{-\frac{3}{4} + \frac{5}{2}}{\frac{49}{4} - \frac{85}{8} + \frac{7}{2}} \left(= \frac{14}{41} \right)$ The rect numerator must but allow slips in the large produced from the expansion.	M1	
	Product = $\frac{1}{\alpha^2 + \beta} \times \frac{1}{\beta^2 + \alpha} = \frac{1}{\alpha^2 \beta^2 + \alpha^3 + \beta^3 + \alpha\beta} = \frac{1}{\frac{49}{4} - \frac{85}{8} + \frac{7}{2}} \left(= \frac{8}{41} \right)$ Attempts product – must be correct expansion of denominator with their values.			
		Applies x^2 – (their sum) x + their product (= 0) Depends on at least one previous M awarded.	dM1	
	$41x^2 - 14x + 8 = 0$ Allow any integer multiple. Must include "=0"			

Question Number	Scheme	Notes	Marks
4	$f(z) = 2z^3 - z$		
(a)	(z=)-1+3i	Correct complex number	B1
			(1)
(b)	$z = -1 \pm 3i \Longrightarrow (z - (-1 + 3i))(z$	$-(-1-3i)) \rightarrow z^2 +z +$	
	Or e.ş		M1
	Sum = -2 , Product = $(-1)^2 - ($		
	Correct strategy to find		A1
	$\frac{z^2 + 2z + 10}{(z^2 + 2z + 10)}$	Uses an appropriate method to find the	Al
	$f(z) = (z^2 + 2z + 10)(2z - 5)$	linear factor	M1
	$\Rightarrow f(z) = 2z^3 - z^2 + 10z - 50$		
	or	Correct cubic or correct constants	A1
	a = 10, b = -50		
()			(4)
(c)	Im 🛉	$-1\pm3i$ correctly plotted with vectors or dots or crosses etc.	
	(-1,3)	May be labelled by coordinates or on	D1
		axes. Do not be concerned about scale but	B1
	(2.5,0)	should look like reflections in the real line.	
	Re	(2.5, 0) plotted correctly or follow through	
	/	their non-zero real root correctly plotted.	
	(-1, -3) ✓	May be labelled by coordinates or on	B1ft
		axes. Do not be too concerned about scale but	БП
		e.g $(2.5,0)$ should be further from O than	
-		(-1,0) is.	(2)
			(2) Total 7
Alt (b)	$f(-1+3i) = 0 \Rightarrow 2(-1+3i)^3 - (-1+3i)^3 = 0$	$(-1+3i)^2 + a(-1+3i) + b = 0$	
	$\operatorname{Im}(f(-1+3i)) = 0 \Rightarrow 2(9-27)$, , ,	
	$\operatorname{Or e.s}$		M1
	$f(-1+3i) - f(-1-3i) = 0 \Rightarrow 2(2(9i-3))$		
	Correct full strategy to	,	
	a = 10 or b = -50	One correct value.	A1
	E.g. $Re(f(-1+3i)) = 0 \Rightarrow 2(-1+2i)$	$7 - (1-9) - a + b = 0 \Rightarrow b = \dots$	2.61
	Correct method to find t	,	M1
	a = 10 and $b = -50$		
	or	Correct constants or correct cubic	A1
	$f(z) = 2z^3 - z^2 + 10z - 50$		
			(4)

Question Number	Scheme	Notes	Marks
5(a)	$r(r-1)(r-3) = r^3 - 4r^2 + 3r$	Correct expansion	B1
	$\sum_{r=1}^{n} (r^3 - 4r^2 + 3r) = \frac{1}{4} n^2 (n+1)^2 - 4\frac{1}{6}$ M1: Attempt to use at least two of the state of the stat	he standard formulae correctly	M1A1
	A1: Correct ex $= \frac{1}{12} n(n+1) [3n(n+1) - 8(2n+1) + 18]$	Attempt to factorise $\frac{1}{12}n(n+1)$ from an expression with these factors. Depends on previous M.	dM1
	Note: for attempts that first expand to a quartic this mark may be awarded at the point the relevant factors are taken out provided a suitable quadratic factor is seen before the final answer.		
	$= \frac{1}{12}n(n+1)[3n^2 - 13n + 10]$ $= \frac{1}{12}n(n+1)(n-1)(3n-10)*$	Cso with $3n^2 - 13n + 10$ (or another appropriate correct quadratic) seen before the final printed answer.	A1*
			(5)
(b)	$\sum_{r=n+1}^{2n+1} r(r-1)(r-3) = \frac{1}{12} (2n+1)(2n+2)2n$ Attempts f (2n+1)	12	M1
	Attempts f $(2n + 1)$ = $\frac{1}{12}n(n+1)[4(2n+1)(6n-7)-(n-1)(3n+1)]$	$[n-10]$ = $\frac{1}{12}n(n+1)(n^2 +n +)$	13.41
	Attempt to factor out $\frac{1}{12}n(n+1)$ and simplify	y the rest to 3 term quadratic expression.	dM1
	For attempts expanding to a quartic first, score for reaching an expression of the correct form.		
	$= \frac{1}{12}n(n+1)(45n^2 - 19n - 38)$	Cao	A1
			(3)
			Total 8

Question Number	Scheme	Notes	Marks
6(a)	$\left(\frac{a}{\sqrt{k}}, a\sqrt{k}\right)$	Correct coordinates – need not be simpified, so accept any equivalents.	B1
	$xy = a^2 \Rightarrow y = a^2 x^{-1}$ $\Rightarrow \frac{dy}{dx} = -a^2 x^{-2} = -a^2 \left(\frac{a}{\sqrt{k}}\right)^{-2} (=-k)$	Correct method for the gradient of the tangent at P . Must have substituted for x (and y) in their derivative.	M1
	$y - a\sqrt{k} = -k\left(x - \frac{a}{\sqrt{k}}\right)$ oe or $y = -kx + c \Rightarrow c = a\sqrt{k} + \frac{ka}{\sqrt{k}};$	M1:Correct straight line method for the tangent at P A1: Correct equation. Need not be fully simplified but do not accept $\sqrt{a^2}$ terms left unsimplified. ISW after a suitable correct equation seen.	M1A1
_	$\Rightarrow y = -kx + 2a\sqrt{k} \text{ oe}$	equation seen.	
(1)			(4)
(b)	$x = 0 \Rightarrow y = \dots y = 0 \Rightarrow x = \dots$	Uses $x = 0$ and $y = 0$ to find A and B	M1
	$A\bigg(rac{2a}{\sqrt{k}},0\bigg)\;\;B\Big(0,2a\sqrt{k}\Big)$	Correct coordinates with same criteria as in (a).	A1
			(2)
(c)	Area = $\frac{1}{2} \times 2a\sqrt{k} \times \frac{2a}{\sqrt{k}} = \dots$	Fully correct strategy for the area	M1
 	$= 2a^2$ Which is independent of k	All correct with conclusion	A1
	•		(2)
			Total 8

Question Number	Scheme	Notes	Marks
7(i)(a)	$\begin{pmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix}$	Correct matrix	B1
a >			(1)
(b)	$\begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix}$	Correct matrix	B1
			(1)
(c)	$ \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} $	Attempt to multiply the right way round. Implied by a correct answer (for their (a) and (b)) if no working is shown, but M0 if incorrect with no working.	M1
	$\begin{pmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{5}{2} & -\frac{5\sqrt{3}}{2} \end{pmatrix}$	Correct matrix	A1
			(2)
(ii)(a)	$\begin{vmatrix} k & k+3 \\ -5 & 1-k \end{vmatrix} = k(1-k) - (-5)(k+3)$	Correct method for the determinant. (Allow miscopy slips only. So $k(1-k)-5(k+3)$ is M0 without further evidence.)	M1
	$=-k^2+6k+15$	Correct simplified expression	A1
			(2)
(b)	$-k^{2} + 6k + 15 = \frac{16k}{2} \Rightarrow k = \dots$ or $-k^{2} + 6k + 15 = -\frac{16k}{2} \Rightarrow k = \dots$	Correct strategy for establishing at least one value for k	M1
	One of $k = -5, 3, -1, 15$	Any one correct value. Note that the negative values may be rejected here.	A1
	k = 3 and $k = 15or k = -5, 3 and k = -1, 15$	Both correct positive values and no others. Condone the inclusion of the negative values if given.	A1
			(3)
			Total 9

Question Number	Scheme		Marks	
8(a)	$y^{2} = 20x \Rightarrow y = \sqrt{20}x^{\frac{1}{2}} \Rightarrow \frac{dy}{dx} = \frac{\sqrt{20}}{2}x^{-\frac{1}{2}} = 0$ or $y^{2} = 20x \Rightarrow 2y\frac{dy}{dx} = 20 \Rightarrow \frac{dy}{dx} = \frac{10}{y} = \frac{10}{10}$ or $x = 5p^{2}, y = 10p \Rightarrow \frac{dy}{dx} = \frac{10}{10p}$	V 1	Correct strategy for finding $\frac{dy}{dx}$ in terms of p	M1
	$y-10p = \frac{1}{p}(x-5p^2)$ or $y = \frac{1}{p}x + c \Rightarrow c = 10p - \frac{1}{p} \times 5p^2$	Correct str	aight line method	M1
	$py - x = 5p^2 *$	Cso		A1*
(b)	(0, 5p)	Correct co	ordinates	B1 (3)
` ′				(1)
(c)	(5, 0)	Correct coordinates		B1 (1)
(d)	$y = \frac{2}{p}x$ E.g. $y = -\frac{5p}{5}(x-5)$ or	Correct equation for l_2		B1
	E.g. $y = -\frac{5p}{5}(x-5)$ or $y = -px + c \rightarrow c = 5p$		ategy for the equation of l_1 it has non-zero gradient)	M1
	$y = \frac{2}{p}x \Rightarrow p = \frac{2x}{y} \Rightarrow y = -\frac{2x}{y}(x-5)$	Eliminates	p to obtain an equation x and y	M1
		Correct eq	uation in any form	A1
	$2x^2 + y^2 = 10x*$	Fully corre	ect proof	A1*
	Alternative for las	t 3 marks o	f (d)	(5)
	$y = \frac{2}{p}x, \ y = -\frac{5p}{5}(x-5)$ $\Rightarrow x =, y =$		Tultaneously to find x and y in	M1
	$x = \frac{5p^2}{p^2 + 2}, \ y = \frac{10p}{p^2 + 2}$	Correct co	ordinates for B	A1
	$2x^{2} + y^{2} = 2\left(\frac{25p^{4}}{\left(p^{2} + 2\right)^{2}}\right) + \frac{100p^{2}}{\left(p^{2} + 2\right)^{2}} = \frac{5}{2}$ Completes the proof by substituting into the given establish the equivariant equivariant.	en equation	and shows sufficient working to	A1*
	•			Total 10

Question Number	Scheme	Notes	Marks
9(i)	$n = 1 \Rightarrow u_1 = 3 \times 2 - 2 \times 3 = 0$ $n = 2 \Rightarrow u_2 = 3 \times 2^2 - 2 \times 3^2 = -6$	Shows the result is true for $n = 1$ and $n = 2$. Ignore references to $n = 3$.	B1
	Substitutes $u_k = 3 \times 2^k - 2 \times 3^k$ and $(u_{k+2} =) 5u_{k+1} - 6u_k = 5(3 \times 2^{k+1} - 6u_k)$ (The inductive assumption magnetical equations)	$-2\times3^{k+1}\left)-6\left(3\times2^{k}-2\times3^{k}\right)$	M1
	$(u_{k+2}) = 15 \times 2^{k+1} - 10 \times 3^{k+1} - 18 \times 2^{k} + 12 \times 3^{k}$ $= 15 \times 2^{k+1} - 9 \times 2^{k+1} - 10 \times 3^{k+1} + 4 \times 3^{k+1}$ $= 6 \times 2^{k+1} - 6 \times 3^{k+1}$	Gathers to a correct two term expression. Accept alternative forms such as $12 \times 2^k - 18 \times 3^k$	A1
	$u_{k+2} = 3 \times 2^{k+2} - 2 \times 3^{k+2}$	Achieves this result with no errors – must be clear it is u_{k+2} but this may have been seen at the start.	A1
	If the result is true for $n = k$ and $n = k + 1$ the been shown to be true for $n = 1$ and $n = 1$. Correct conclusion including all the bold poin marks	= 2 then the result is true for all <i>n</i> . Its in some form. Depends on all previous	- A1cso
			(5)
(ii)	$f(n) = 3^{3n-2}$	$^{2}+2^{4n-1}$	
	$f(1) = 3^1 + 2^3 = 11$	Shows the result is true for $n = 1$	B1
	$f(k+1) - f(k) = 3^{3(k+1)-2} + $ $= 27 \times 3^{3k-2} + 16 \times 2^{4k-1} - 3^{3k-2} - 2^{4k-1} = 26$ Attempts $f(k+1) - f(k)$ and reaches $\alpha \times 3$	$ \times 3^{3k-2} + 15 \times 2^{4k-1} \left(= \frac{26}{9} 3^{3k} + \frac{15}{2} 2^{4k} \right) $ $ 3^{3k-2} + \beta \times 2^{4k-1} or \alpha \times 3^{3k} + \beta \times 2^{4k} $	M1
	(Mark variations on the theme as appropri = $15 \times (3^{3k-2} + 2^{4k-1}) + 11 \times 3^{3k-2}$ or = $26 \times (3^{3k-2} + 2^{4k-1}) - 11 \times 2^{4k-1}$	Correct expression with $f(k)$ evident.	A1
	$f(k+1) = 16f(k) + 11 \times 3^{3k-2} \text{ or}$ $f(k+1) = 27f(k) - 11 \times 2^{4k-1}$	Makes $f(k + 1)$ the subject and states divisible by 11 (oe – may be implied by conclusion), or gives full reason why $f(k + 1)$ is divisible by 11. Dependent on first M	dM1
	If the result is true for $n = k$ then it is true for be true for $n = 1$, then the Correct conclusion including all the bold poin marks	n = k + 1. As the result has been shown to result is true for all n . Its in some form. Depends on all previous	Alcso
			(5)
<u> </u>			Total 10

ALT 1	$f(1) = 3^1 + 2^3 = 11$	Shows the result is true for $n = 1$	B1
	$f(k+1) = 3^{3k+1} + 2^{4k+3}$		
	$f(k+1) = 27 \times 3^{3k-2} + 16 \times 2^{4k-1} \text{ or } 3 \times 3^{3k} + 8 \times 2^{4k}$		
	Attempts f $(k + 1)$ and reduces power to $\alpha \times 3^{3k-2} + \beta \times 2^{4k-1}$ or $\alpha \times 3^{3k} + \beta \times 2^{4k}$		
	$f(k+1) = 16 \times (3^{3k-2} + 2^{4k-1}) + 11 \times 3^{3k-2}$ or		
	$f(k+1) = 27 \times (3^{3k-2} + 2^{4k-1}) - 11 \times 2^{4k-1}$	Correct expression	A1
	$f(k+1) = 16f(k) + 11 \times 3^{3k-2}$ or $f(k+1) = 27f(k) - 11 \times 2^{4k-1}$	States divisible by 11 (oe– may be implied by conclusion)	dM1
	If the result is true for $n = k$ then it is true for $n = k$	Depends on first M (+1) As the result has been shown to	
	be true for $n = 1$, then the result	t is true for all <i>n</i> .	A 1 aga
	Correct conclusion including all the bold points in marks.	some form. Depends on all previous	Alcso
ALT 2	$f(1) = 3^1 + 2^3 = 11$	Shows the result is true for $n = 1$	B1
	Let $3^{3k-2} + 2^{4k-1} = 11M$		
	$f(k+1) = 3^{3k+1} + 2$	4k+3	
	$f(k+1) = 27(11M - 2^{4k-1}) + 2^{4k+3}$ or	$3^{3k+1} + 16(11M - 3^{3k-2})$	M1
	Attempt $f(k+1)$ and expresse	/	
	$f(k+1) = 297M - 11 \times 2^{4k-1} \text{ or } 176M + 11 \times 3^{3k-2}$	Correct expression	A1
	$f(k+1) = 11(27M - 2^{4k-1}) \text{ or } 11(16M + 3^{3k-2})$	Takes out a factor of 11, or gives full reason why $f(k+1)$ is divisible by 11. Depends on first M	dM1
	If the result is true for $n = k$ then it is true for $n = k$		
	be true for $n = 1$, then the result is true for all n . Correct conclusion including all the bold points in some form. Depends on all previous		
	marks.		
ALT 3	$f(1) = 3^1 + 2^3 = 11$	Shows the result is true for $n = 1$	B1
	$f(k+1) - \alpha f(k) = 3^{3k+1} + 2^{4k+3} - \frac{1}{2}$	$-\alpha(3^{3k-2}+2^{4k-1})$	M1
	Attempts $f(k+1) - \alpha f(k)$ where $\alpha = 16$ or	27 or other appropriate value.	1711
	= $(27-\alpha)3^{3k-2}+(16-\alpha)2^{4k-1}$ e.g.	Correct expression for their α where	
	$=11\times3^{3k-2}\left(+(16-16)\times2^{4k-1}\right)$ or	a common factor of 11 is clear. (E.g.	A1
	$= ((27-27)\times3^{3k-2})-11\times2^{4k-1}$	$\alpha = 5$)	
		Makes $f(k + 1)$ the subject in an expression where 11 is a clear	
	E.g. $f(k+1) = 16f(k) + 11 \times 3^{3k-2}$ or $f(k+1) = 27f(k) - 11 \times 2^{4k-1}$	common factor and states divisible by 11 (oe – may be implied by conclusion).	dM1
	Dependent on first M If the result is true for $n = k$ then it is true for $n = k + 1$. As the result has been shown to		
	be true for $n = 1$, then the result is true for all n .		
	Correct conclusion including all the bold points in some form. Depends on all previous marks.		
	marks.		